The bondage numbers of graphs with small crossing numbers
نویسندگان
چکیده
منابع مشابه
The bondage numbers of graphs with small crossing numbers
The bondage number b(G) of a nonempty graph G is the cardinality of a smallest edge set whose removal from G results in a graph with domination number greater than the domination number (G) ofG. Kang andYuan proved b(G) 8 for every connected planar graph G. Fischermann, Rautenbach and Volkmann obtained some further results for connected planar graphs. In this paper, we generalize their results ...
متن کاملRoman bondage numbers of some graphs
A Roman dominating function on a graph G = (V,E) is a function f : V → {0, 1, 2} satisfying the condition that every vertex u with f(u) = 0 is adjacent to at least one vertex v with f(v) = 2. The weight of a Roman dominating function is the value f(G) = ∑ u∈V f(u). The Roman domination number of G is the minimum weight of a Roman dominating function on G. The Roman bondage number of a nonempty ...
متن کاملCrossing numbers of random graphs
An order type of the points x1, x2, ..., xn in the plane (with no three colinear) is a list of orientations of all triplet xixjxk, i < j < k. Let X be the set of all order types of the points x1, ..., xn in the plane. For any graph G with vertices v1, ..., vn let lin-crξ(G) denote the number of crossings in the straight line drawing of G, where vi is placed at xi in the plane and x1, ..., xn ha...
متن کاملCrossing numbers of imbalanced graphs
The crossing number, cr(G), of a graph G is the least number of crossing points in any drawing of G in the plane. According to the Crossing Lemma of Ajtai, Chvátal, Newborn, Szemerédi [ACNS82] and Leighton [L83], the crossing number of any graph with n vertices and e > 4n edges is at least constant times e/n. Apart from the value of the constant, this bound cannot be improved. We establish some...
متن کاملOn Bondage Numbers of Graphs: A Survey with Some Comments
The domination number of a graph G is the smallest number of vertices which dominate all remaining vertices by edges of G. The bondage number of a nonempty graphG is the smallest number of edges whose removal fromG results in a graph with domination number greater than the domination number of G. The concept of the bondage number was formally introduced by Fink et al. in 1990. Since then, this ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Mathematics
سال: 2007
ISSN: 0012-365X
DOI: 10.1016/j.disc.2006.09.035